Omega-3 Fatty Acids and Inflammatory Processes.

Calder Philip C.
Nutrients, 2010

Abstract

Long chain fatty acids influence inflammation through a variety of mechanisms; many of these are mediated by, or at least associated with, changes in fatty acid composition of cell membranes. Changes in these compositions can modify membrane fluidity, cell signaling leading to altered gene expression, and the pattern of lipid mediator production. Cell involved in the inflammatory response are typically rich in the n-6 fatty acid arachidonic acid, but the contents of arachidonic acid and of the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) can be altered through oral administration of EPA and DHA. Eicosanoids produced from arachidonic acid have roles in inflammation. EPA also gives rise to eicosanoids and these often have differing properties from those of arachidonic acid-derived eicosanoids. EPA and DHA give rise to newly discovered resolvins which are anti-inflammatory and inflammation resolving. Increased membrane content of EPA and DHA (and decreased arachidonic acid content) results in a changed pattern of production of eicosanoids and resolvins. Changing the fatty acid composition of cells involved in the inflammatory response also affects production of peptide mediators of inflammation (adhesion molecules, cytokines etc.). Thus, the fatty acid composition of cells involved in the inflammatory response influences their function; the contents of arachidonic acid, EPA and DHA appear to be especially important. The anti-inflammatory effects of marine n-3 PUFAs suggest that they may be useful as therapeutic agents in disorders with an inflammatory component.

Keywords

cytokine; eicosanoid; fish oil; interleukin; leukocyte; macrophage; monocyte; neutrophil.

Figures

Time course of incorporation of EPA and DHA into human blood mononuclear cells

Time course of incorporation of EPA and DHA into human blood mononuclear cells. Healthy subjects supplemented their diet with fish oil capsules providing 2.1 g EPA plus 1.1 g DHA per day for a period of 12 weeks. Blood mononuclear cell phospholipids were isolated at 0, 4, 8 and 12 weeks and their fatty acid composition determined by gas chromatography. Data are mean ± SEM from 8 subjects and are from Yaqoob et al.

Outline of the pathway of eicosanoid biosynthesis from arachidonic acid

Outline of the pathway of eicosanoid biosynthesis from arachidonic acid. COX, cyclooxygenase; HETE, hydroxyeicosatetraenoic acid; HpETE, hydroperoxyeicosatetraenoic acid; LOX, lipoxygenase; LT, leukotriene; LX, lipoxin; oxoETE, oxoeicosatetraenoic acid; PG, prostaglandin; TX, thromboxane.

General overview of synthesis and actions of lipid mediators produced from arachidonic acid, EPA and DHA. COX, cyclooxygenase; LOX, lipoxygenase; LT, leukotriene; PG, prostaglandin.

General overview of synthesis and actions of lipid mediators produced from arachidonic acid, EPA and DHA. COX, cyclooxygenase; LOX, lipoxygenase; LT, leukotriene; PG, prostaglandin.

Outline of the pathway of synthesis of resolvins and related mediators from EPA and DHA. COX, cyclooxygenase; HpDHA, hydroperoxydocosahexaenoic acid; HpEPE, hydroperoxyeicosapentaenoic acid; LOX, lipoxygenase; LT, leukotriene; PG, prostaglandin; Rv, resolvin; TX, thromboxane

Outline of the pathway of synthesis of resolvins and related mediators from EPA and DHA. COX, cyclooxygenase; HpDHA, hydroperoxydocosahexaenoic acid; HpEPE, hydroperoxyeicosapentaenoic acid; LOX, lipoxygenase; LT, leukotriene; PG, prostaglandin; Rv, resolvin; TX, thromboxane.

PMID:22254027
DOI:10.3390/nu2030355
PMCID (Free PMC Article):PMC3257651
Category:Immune

The best supplements with Omega-3 Acids, Docosahexaenoic Acid or Eicosapentaenoic Acid in Immune category:

Articles similar to "Omega-3 Fatty Acids and Inflammatory Processes."

Previous article

Omega-3 Fatty Acids and Inflammatory Processes: From Molecules to Man.

Next article

Long-chain Fatty Acids and Inflammation.