Omega 6 Fatty Acids for the Primary Prevention of Cardiovascular Disease.

Al-Khudairy Lena, et al.
Cochrane Database of Systematic Reviews, 2015

Abstract

Background

Omega 6 plays a vital role in many physiological functions but there is controversy concerning its effect on cardiovascular disease (CVD) risk. There is conflicting evidence whether increasing or decreasing omega 6 intake results in beneficial effects.

Objectives

The two primary objectives of this Cochrane review were to determine the effectiveness of:1. Increasing omega 6 (Linoleic acid (LA), Gamma-linolenic acid (GLA), Dihomo-gamma-linolenic acid (DGLA), Arachidonic acid (AA), or any combination) intake in place of saturated or monounsaturated fats or carbohydrates for the primary prevention of CVD.2. Decreasing omega 6 (LA, GLA, DGLA, AA, or any combination) intake in place of carbohydrates or protein (or both) for the primary prevention of CVD.

Search Methods

We searched the following electronic databases up to 23 September 2014: the Cochrane Central Register of Controlled Trials (CENTRAL) on the Cochrane Library (Issue 8 of 12, 2014); MEDLINE (Ovid) (1946 to September week 2, 2014); EMBASE Classic and EMBASE (Ovid) (1947 to September 2014); Web of Science Core Collection (Thomson Reuters) (1990 to September 2014); Database of Abstracts of Reviews of Effects (DARE) and Health Technology Assessment Database, and Health Economics Evaluations Database on the Cochrane Library (Issue 3 of 4, 2014). We searched trial registers and reference lists of reviews for further studies. We applied no language restrictions.

Selection Criteria

Randomised controlled trials (RCTs) of interventions stating an intention to increase or decrease omega 6 fatty acids, lasting at least six months, and including healthy adults or adults at high risk of CVD. The comparison group was given no advice, no supplementation, a placebo, a control diet, or continued with their usual diet. The outcomes of interest were CVD clinical events (all-cause mortality, cardiovascular mortality, non-fatal end points) and CVD risk factors (changes in blood pressure, changes in blood lipids, occurrence of type 2 diabetes). We excluded trials involving exercise or multifactorial interventions to avoid confounding.

Data Collection And Analysis

Two review authors independently selected trials for inclusion, extracted the data, and assessed the risk of bias in the included trials.

Main Results

We included four RCTs (five papers) that randomised 660 participants. No ongoing trials were identified. All included trials had at least one domain with an unclear risk of bias. There were no RCTs of omega 6 intake reporting CVD clinical events. Three trials investigated the effect of increased omega 6 intake on lipid levels (total cholesterol, low density lipoprotein (LDL-cholesterol), and high density lipoprotein (HDL-cholesterol)), two trials reported triglycerides, and two trials reported blood pressure (diastolic and systolic blood pressure). Two trials, one with two relevant intervention arms, investigated the effect of decreased omega 6 intake on blood pressure parameters and lipid levels (total cholesterol, LDL-cholesterol, and HDL-cholesterol) and one trial reported triglycerides. Our analyses found no statistically significant effects of either increased or decreased omega 6 intake on CVD risk factors.Two studies were supported by funding from the UK Food Standards Agency and Medical Research Council. One study was supported by Lipid Nutrition, a commercial company in the Netherlands and the Dutch Ministry of Economic Affairs. The final study was supported by grants from the Finnish Food Research Foundation, Finnish Heart Research Foundation, Aarne and Aili Turnen Foundation, and the Research Council for Health, Academy of Finland.

Authors' Conclusions

We found no studies examining the effects of either increased or decreased omega 6 on our primary outcome CVD clinical endpoints and insufficient evidence to show an effect of increased or decreased omega 6 intake on CVD risk factors such as blood lipids and blood pressure. Very few trials were identified with a relatively small number of participants randomised. There is a need for larger well conducted RCTs assessing cardiovascular events as well as cardiovascular risk factors.

PMID:26571451
DOI:10.1002/14651858.CD011094.pub2
Category:Cardiovascular Support

The best supplements with Omega-6 Acids in Cardiovascular Support category:

Articles similar to "Omega 6 Fatty Acids for the Primary Prevention of Cardiovascular Disease."

  • The significance of Omega-6 Acids for Cardiovascular Support: Omega-6 Fats for the Primary and Secondary Prevention of Cardiovascular Disease. ( Omega-6 fats are polyunsaturated fats vital for many physiological functions, but their effect on cardiovascular disease (CVD) risk is debated... This is the most extensive systematic assessment of effects of omega-6 fats on cardiovascular health, mortality, lipids and adiposity to date, using previously unpublished data. We found no evidence that increasing omega-6 fats reduces cardiovascular outcomes other than MI, where 53 people may need to increase omega-6 fat intake to prevent 1 person from experiencing MI. Although benefits of omega-6 fats remain to be proven, increasing omega-6 fats may be of benefit in people at high risk of MI. Increased omega-6 fats reduce serum total cholesterol but not other blood fat fractions or adiposity. )

Previous article

Omega-6 Fats for the Primary and Secondary Prevention of Cardiovascular Disease.

Next article

Preliminary Study on Antirheumatic Activity of Curcumin (Diferuloyl Methane).